QUICK REFERENCE

Conversion and Formula Summary

There are many conversions and formulas used in selecting oil coolers. This will be a brief summary of those most commonly used.

Conversions

A. HP = (BTU's/hr) / 2545 = (BTU's/min) / 42.4 = KW/.746, or BTU's/hr = HP x 2545; BTU's/min = HP x 42.4; KW = HP x .746

B. GPM = (L/min) / 3.78 or $L/min = GPM \times 3.78$

C. $^{\circ}F = (1.8 \times ^{\circ}C) + 32 \text{ or } ^{\circ}C = (^{\circ}F - 32) / 1.8$

D. Mobil Series: Air Velocity SFPM = SCFM/Face Area in Ft^2 , or SCFM = Ft^2 Face Area x Face Velocity SFPM

Methods to Determine Heat Loads

A. Hydraulic oil cooling: Assume 30% of the input horsepower will be rejected to heat. If the input horsepower is unknown, this formula may be used: BTU/HR = (System PSI) x (GPM Flow) x 1.8 x .3

B. Hydrostatic oil cooling: Assume 25% of the input horsepower will be rejected to heat.

C. Automatic transmission: Assume 30% of the engine horsepower will be rejected to heat.

D. Engine oil cooling: Assume 10% of the engine horsepower will be rejected to heat.

Heat Loads

A. BTU's/hr = (Input Horsepower) \times (2545) \times (.25 — .5)

B. BTU's/hr = (System GPM Capacity) x (System Pressure) x (1.8) x (.25 — .5)

C. BTU's/hr = (PSI Pressure Drop) x (GPM Oil Flow) x (1.5) x (% Time)

D. BTU's/hr = (Horsepower to Gearbox) \times (2545 \times (.05 — .5)

E. BTU's/hr = (Compressor HP) x (1.1) x (.85) x (2545)

F. BTU's/hr = (Max Temp. Rise °F/hr) x (Gallons of Oil Changing Temp.) x (3.5)

G. BTU's/hr = (GPM Oil Flow) x (Oil \triangle T) x (210)

Conversions

 $^{\circ}F = (1.8 \times ^{\circ}C) + 32$

BARS = 14.5 x psi

BTU/hr = .2931 x WATTS

 $BTU/min = .01757 \times KW$

 $ft^2 = in^2/144$

 $ft^2 = 92900 \text{ x mm}^2$

 $GPM = 3.78 \times L/mim$

 $HP = BTU/hr \div 2545$

 $HP = BTU/min \div 42.41$

 $HP = 0.746 \times KW$

 $in^2 = 645.2 \text{ x mm}^2$

 $in^3 = .004329 \times GAL$

 $in^3 = .01639 \times LITERS$

 $m^3 = 264.2 \text{ x GAL}$

 $m^3 = 1000 \times LITERS$

mm = 25.4 xin

psig = psia - 14.7

Temperature Changes

A. Oil $\triangle T = (BTU's/hr) / (GPM Oil Flow x 210)$

B. Water $\triangle T = (BTU's/hr) / (GPM Water Flow x 500)$

C. 50/50 Ethylene Glycol $\triangle T = (BTU's/hr) / (GPM Flow x 432)$

D. Air $\triangle T = (BTU's/hr) / (SCFM Air Flow x 1.08)$

Temperature Changes

Water Cooled: HP curve = HP Heat x 40 x Correction A

(Oil outlet °F - Water inlet °F)

AO Series:

HP curve = HP Heat x 100

(except AOL)

(Oil outlet °F - Ambient air °F)

AOL Series:

HP curve = HP Heat x 100

(Oil inlet °F - Ambient air °F)

Mobile Series:

BTU's/hr curve = HP Heat x 2545 x 100

(Oil inlet °F - Ambient air °F)

Centistokes to Saybolt Universal Seconds Conversion

