

Compressed air is considered industry's fourth utility, but is seldom considered as a contributing cost of production. Instead, compressed air costs are typically blended into overhead and often thought of as "free." Such ambiguity can hide cost savings that can positively impact your bottom-line and affect your ability to account for production costs. Existing compressed air systems in the United States consume an estimated and treat compressed air can be substantial. Even the smallest compressed air system can be a relatively large source of energy consumption and cost. 90 billion kWh/year of electricity. The energy being used to produce

that efficient and effective compressed air is available for the lowest possible Compressed air energy can cost seven to ten times more than electrical valued form of energy is worth maximizing. An optimized system ensures energy when it comes to doing mechanical or process related work. This cost with minimal environmental consequences.

Swing Couplings by OETIKER

In addition to improved air flow, Swing Couplings by OETIKER offer a wide range of added benefits:

= Safety EVERY time!

No accidental uncoupling, two actions must be fully performed to uncouple!

Safety!

Simultaneous venting upon disconnection

All downstream air is evacuated prior to disconnection, eliminating dangerous whiplash possibilities!

under pressure, up to 200 PSI! No force required! Zero pressure to connect and disconnect No errors!

Vacuum up to 3hg

Operating Pressure up to 700 PSI

Easily connect/disconnect!

No Leaks

Other materials are available upon request, such as All Swing Couplings by Oetiker come with NBR (Nitrile elastomer) as standard seals! EPDM, and FPM.

Unrestricted Full Flow!

at maximum performance. System operating PSI may No valve therefore no flow restrictions, tools operate be reduced.

Standard quick coupling: air must be diverted, causing resistance!

No diversion of airflow since there is no valve.

= Significant energy savings!

ETIKER

Common sizes:

1/4", 3/8", and 1/2". Other sizes may be available upon request.

Also available in these common configurations:

ETIKER

Dust Cap ETIKER

29500385 A1 & B1 (1/4") 29500340 DL & E (3/8")

Accessories:

29500480 (1/4") 29500481 (3/8") 29500482 (1/2")

29500381 A1 & B1 (1/4") 29500195 DL & E (3/8")

Air

- it to breathe. As per definition air is a colorless, non-For us humans air is vital, and we incessantly need of nitrogen (78%), oxygen (21%), and inert (noble) odorous and a tasteless gas compound consisting gases (1%).
- The atmosphere around earth has a depth of about 60 miles.
- Its pressure on earth is called atmospheric pressure positions, amounts to 1 bar (14.5 psi) = $10N/cm^2$. and, depending on weather and geo-graphical I
- If air is compressed, it can be a safe and convenient medium in operation, use for transmitting and accumulating energy. I
- But what is compressed air?

Compressed Air

When a gas such as air is compressed, its volume becomes smaller. The free molecules (oxygen and nitrogen) are compressed in a smaller space => higher pressure.

- If the volume is reduced to its half, pressure will double. I
- atmospheric pressure. This overpressure This results in a greater pressure than is called compressed air!

Pressure

- 1.013 bar (14.7 PSI), a pressure of air which is also The atmospheric pressure on sea level amounts to called absolute pressure. I
- In the SI system each pressure specification refers pressure [P], unless pressure is explicitly specified to the sea level, that is to say to the absolute as overpressure [Pe]. I
- Contrary to gaseous medium, liquid (fluid) medium cannot be compressed. I

Overpressure Pe (excedens)

pressure outside the system, and is typically used to pressure. The manometer pressure is defined as the measure the pressure in an air distributing system. absolute pressure in a system minus the absolute absolute pressure (14.7 PSI) and G = manometer It is very important to distinguish between a = I

Pressure Units

Overpre	ssure	Depress	sion
bar	Psi	mbar	inHg
(Newton per square cm)	(Pound per square inch)		(inch of mercury)
100	1450		
10	145		
1.013	14.69	1013	29.91
-	14.5	1000	29.53
0.1		100	2.953
0.01		10	0.295
0.001		1	0.029

OETIKER

Vacuum / Depression

difference of pressure from the operating pressure The depression represents the constant negative to the atmospheric one. I

						-	-			
	Atmosphere			Suckers for handling materials			Standard for SC & SV couplings	SV coupling VAC version		
mbar	1013	006	800	600	500	400	100	10	5	-
bar	1.013	0.9	0.8	0.6	0.5	0.4	0.1	0.01	0.005	0.001

Pressure Drop

- pressure from the compressor discharge to the actual point of use. Pressure drop is a term used to characterize the reduction in air Pressure drop occurs as the compressed air travels through the treatment and distribution system. A properly designed system compressor's discharge pressure, measured from the receiver should have a pressure loss of much less than 10% of the tank output to the point of use. I
- system require higher operating pressures than are needed, resulting and excessive energy consumption. Flow restrictions of any type in a in higher energy consumption. Minimizing differentials in all parts of Excessive pressure drop will result in poor system performance the system is an important part of efficient operation. L

Manufacturing Plants

Additional Oetiker Coupler Products

Talk to your Oetiker Rep for details and availability

SV 2-stage Heavy Duty Coupler

Extremely durable, use for heavy duty applications/ harsh environments. Extremely long service life.

Available plug with check valve

SV 2-stage Non-Interchangeable Coupler For use in any situation to eliminate dangerous cross contamination of various media lines (see examples on following page).

Types of Keyed plugs with color coding

Plug with check valve

SV 2-stage Non-Interchangeable Coupler Sample applications:

Medical / Chemical / Pharmaceutical Transfer Lines

OETIKER

Compression Coupling

Advantages:

- Reusable
- Requires no special tools
- Allows use of bulk hose purchases
- ✓ Considerable cost savings \$\$
- ✓ No clamps needed

"Three Simple Steps"

Shown above – Item #20500661 Hose not included In accordance with ISO 4414, EN983 ISO 6150-B-15, AFNOR: B-15 NF E 49-053

US: MIL-C 4109

1. Insert hose into compression fitting

2. Thread coupler into compression fitting.

3. Tighten

Compatil	ble with 3/8"	Standard	Industrial
	Interch	ange.	
NPT 1/4"	Male Plug –	Iten	n #25500236

NPT 1/4"	Male Plug –	Item #25500236
NPT 1/4"	Female Plug –	Item #25500237
NPT 3/8"	Male Plug –	Item #25500044
NPT 3/8"	Female Plug –	Item #25500049

Contact your Oetiker Account Manager today!

3305 Wilson Street, POB 217, Marlette, MI 48453-0217 203 Dufferin Street South, Alliston, ON L9R 1W7 Phone: (989) 635-3621 Fax: (989) 635-2157 Phone: (705) 435-4394 Fax: (705) 435-3155

25

USA Phone: (989) 635-3621 Fax: (989) 635-2157 Canada Phone: (705) 435-4394 Fax: (705) 435-3155

Swing Coupling

Features/Benefits:

- Light Weight less than half the weight of equal steel coupling
- ✓ Made of aluminum
- ✓ Full Flow negligible loss of pressure
- Safe quick connectiondisconnections under pressure
- ✓ Viton Seals
- ✓ Simultaneous venting reduces the dangerous whiplash effect

Note: Application for light duty only. Not intended for impact tool.

Special plug required.

20500645	SC-DL 1/4V w 1/4NPT F. PL	(20500642 & 25500061)
20500646	SC-DL 3/8V w 1/4NPT F. PL	(20500643 & 25500061)
20500647	SC-DL 1/4V w 1/4NPT M. PL	(20500642 & 25500058)
20500648	SC-DL 3/8V w 1/4NPT M. PL	(20500643 & 25500058)
25500058 25500061	SC-DL 1/4" NPT M. Plug SC-DL 1/4" NPT F. Plug	

Full Flow

Connecting Technology

Connect

Disconnect

26

OETIKER Swing Couplings Installation Instructions

Oetiker Swing Coupling ready to be installed.

Sealant applied to NPT thread.

Assemble connection hand tight.

Tighten the connection by using the appropriate wrench on the hexagonal surface.(Backnut)

Ensure vent hole is pointed to the wall.

 Do not install, remove or position the coupling using a wrench on the housing - always apply wrench to the backnut!

Do not apply any tools at the sleeve during or after installation of coupling!

For operating instructions please consult the OETIKER Swing Couplings Catalogue.

OETIKER Swing Couplings Whip Hose Installation Examples

ISO 6150 – 7.1 Installation with vibrating tools

It is recommended that a minimum length of 300 mm of flexible hose for compressed air be inserted between a vibrating tool and the quick-action coupling.

Notes

The Air Distribution Subsystem

The air distribution subsystem, which connects the major components, is one of the most important parts of the compressed air system. It is made up of main trunk lines, hoses and valves, drops to specific usage points, pressure regulators and lubricators, additional filters and traps, and supplementary air treatment equipment. It is throughout this subsystem that most leaks occur, energy is lost, and maintenance is required. Equipment should be chosen to avoid excessive pressure drops and leakage. In addition, consideration of appropriate sizing of equipment and layout will provide for proper air supply, good tool performance, and optimal production. The complete drying, filtration, and distribution system should be sized and arranged so that the total pressure drop from the air compressor to the points of use is much less than 10% of the compressor discharge pressure.

The efficiency of the entire system can be enhanced by the proper selection, application, installation, and maintenance of each component.

Pressure Drop

Pressure drop is a term used to characterize the reduction in air pressure from the compressor discharge to the actual point of use. Pressure drop occurs as the compressed air travels through the treatment and distribution system. A properly designed system should have a pressure loss of much less than 10% of the compressor's discharge pressure, measured from the receiver tank output to the point of use.

Excessive pressure drop will result in poor system performance and excessive energy consumption. Flow restrictions of any type in a system require higher operating pressures than are needed, resulting in higher energy consumption. Minimizing differentials in all parts of the system is an important part of efficient operation. Pressure drop upstream of the compressor signal requires higher compression pressures to achieve the control settings on the compressor. The most typical problem areas include the aftercooler, lubricant separators, and check valves. This particular pressure rise resulting from resistance to flow can involve increasing the drive energy on the compressor by 1% of the connected power for each 2 psi of differential.

An air compressor capacity control pressure signal normally is located at the discharge of the compressor package. When the signal location is moved downstream of the compressed air dryers and filters, to achieve a common signal for all compressors, some dangers must be recognized and precautionary measures taken. The control range pressure setting must be reduced to allow for actual and potentially increasing pressure drop across the dryers and filters. Provision also must be made to prevent exceeding the maximum allowable discharge pressure and drive motor amps of each compressor in the system.

Pressure drop in the distribution system and in hoses and flexible connections at points of use results in lower operating pressure at the points of use. If the point of use operating pressure has to be increased, try reducing the pressure drops in the system before adding capacity or increasing the system pressure. Increasing the compressor discharge pressure or adding compressor capacity results in significant increases in energy consumption.

Elevating system pressure increases unregulated uses such as leaks, open blowing and production applications without regulators or with wide open regulators. The added demand at elevated pressure is termed "artificial demand", and substantially increases energy consumption. Instead of increasing the compressor discharge pressure or adding additional compressor capacity, alternative solutions should be sought, such as reduced pressure drop, strategic compressed air storage, and demand/intermediate controls. Equipment should be specified and operated at the lowest efficient operating pressure.

What Causes Pressure Drop?

Any type of **obstruction**, restriction or roughness in the system will cause resistance to air flow and cause pressure drop. In the distribution system, the highest pressure drops usually are found at the points of use, including in undersized or leaking hoses, tubes, disconnects, filters, regulators and lubricators (FRLs). On the supply side of the system, air/lubricant separators, aftercoolers, moisture separators, dryers and filters are the main items causing significant pressure drops.

The maximum pressure drop from the supply side to the points of use will occur when the compressed air flow rate and temperature are highest. System components should be selected based upon these conditions and the manufacturer of each component should be requested to supply pressure drop information under these conditions. When selecting filters, remember that they will get dirty. Dirt loading characteristics are also important selection criteria. Large end-users that purchase substantial quantities of components should work with their suppliers to ensure that products meet the desired specifications for differential pressure and other characteristics.

The distribution piping system often is diagnosed as having a high-pressure drop because a point of use pressure regulator cannot sustain the required downstream pressure. If such a regulator is set at 85 psig and the regulator and/or the upstream filter has a pressure drop of 20 psi, the system upstream of the filter and regulator would have to maintain at least 105 psig. The 20 psi pressure drop may be blamed on the system piping rather than on the components at fault. The correct diagnosis requires pressure measurements at different points in the system to identify the component(s) causing the high pressure drop. In this case, the filter/regulator size needs to be increased, not the piping.

Minimizing Pressure Drop

Minimizing pressure drop requires a systems approach in design and maintenance of the system. Air treatment components, such as aftercoolers, moisture separators, dryers, and filters, should be selected with the lowest possible pressure drop at specified maximum operating conditions. When installed, the recommended maintenance procedures should be followed and documented. Additional ways to minimize pressure drop are as follows:

- Properly design the distribution system.
- Operate and maintain air filtering and drying equipment to reduce the effects of moisture, such as pipe corrosion.
- Select aftercoolers, separators, dryers and filters having the least possible pressure drop for the rated conditions.
- Reduce the distance the air travels through the distribution system.
- Specify pressure regulators, lubricators, hoses, and connections having the best performance characteristics at the lowest pressure differential.

Source: http://www.knowpressure.org/

Some Facts:

The horsepower required for a stationary single-stage electric compressor is approximately 28% that of its capacity, expressed in cfm (sea level at 125 psig). Source: Lyman Scheel

A water-cooled after-cooler will require approximately 3 USGPM per 100 cfm of air compressed to 100 psig. Source: Ingersoll-Rand

At 100 psi, a 6-inch diameter airline will carry 3,000 cfm one mile with a loss of approximately 12 psi. Source: Franklin Matthias

At 100 psi, a 4-inch diameter airline will carry 1,000 cfm one mile with a loss of approximately 12 psi. Source: Franklin Matthias

A line leak or cracked valve with an opening equivalent to 1/8-inch (3 mm) diameter will leak 25 cfm (42m3/min.) at 100 psig (7 bars). Source: Lanny Pasternack

In a well-managed system, the air leaks should not exceed 15% of productive consumption. Source: Lanny Pasternack

Except in South Africa, pneumatic drills are usually designed to operate at 90 psig (6.2 bars). Their drilling speed will be reduced by 30% at 70 psig (4.8 bars). Source: Christopher Bise

A line oiler reduces the air pressure by 5 psi. Source: Ingersoll-Rand

Point of use components – Rate of flow considerations at the point of use is much more important than in sizing distribution piping. When end users complain of low pressure the first thing blamed is the piping because "the user is at the other end of the system" or "the piping system has been expanded haphazardly over the years" (or whatever the excuse), the real problem is almost never the piping. The real source of problems described as "low pressure" usually resides in the choice of installed point of use components.

amount of energy-and a piecemeal approach to building a compressed air Compressed air is not typically viewed as a cost of production-but it is anything but "free." The generation of compressed air requires a huge system serves to worsen the problem through leaks, mismatched supply/demand, and inappropriate uses. The result is unreliability, energy waste, reduced productivity, and higher operating costs.

improved competitiveness, less downtime, and greater return on investment. benefits. Compressed air is a utility that is generated in-house. That means about efficient use of compressed air systems, you can improve efficiency, that you have more control over it than any other utility. By learning more Paying attention to the compressed air system can lead to a number of reduce costs, and increase productivity and reliability. This can lead to

Notes

Compressed Air System Economics

Delivering compressed air to a manufacturing facility is an expensive operation. Delivery requires costly equipment that consumes significant amounts of electricity and needs frequent maintenance. In spite of this, many facilities have no idea how much their compressed air systems cost on an annual basis, or how much money they could save by improving the performance of these systems

Electricity costs are by far the largest expense of owning and operating a compressed air system. The initial cost for a 100-hp compressor is \$30,000---\$50,000, depending on the type of compressor and manufacturer, while annual electricity charges for the same system can reach \$50,000. Added to this are annual maintenance costs, which can be 10% or more of the initial cost of the system.

This Fact Sheet presents a simple calculation to estimate annual electricity costs, and a more accurate calculation requiring electrical measurements.

Calculating Electricity Costs

Full-load Operation. Even if an air compressor is not separately metered, estimating annual electricity cost is simple.

A Simple Calculation. The following data is needed for a quick calculation of electricity costs for a compressor operating at full-load:

- Compressor motor nameplate rating (bhp),
- Motor nameplate efficiency (or an estimate of efficiency),
- Annual hours of operation (hrs/year), and
- Cost of electricity (\$/kWh)

Annual electricity costs can be calculated by performing the following:

Simple Calculation (100-hp Compressor)

Annual Electricity Costs = (Motor full-load brake horsepower) x (0.746 kWhp) x (1/0.90) x (Annual Hours of Operation) x (Electricity Cost in \$/kWh)

For example:

- Motor full-load bhp = 100 hp
- Annual hours of operation = 8,760 hours (3-shift, continuous operation)
- Cost of electricity = \$0.05/kWh

```
Annual electricity costs =
(100 hp) x (0.746 hp/kW) x (1/0.9) x (8,760 hours) x
($0.05/kWh)
= $36,305
```

This equation assumes the electric motor driving the compressor is 90% efficient (the 90 in the 1/0.90 factor) -- a reasonable estimate for a modern system larger than 50 hp. Newer energy-efficient motors may have even higher efficiencies, especially since the Energy Policy Act minimum motor efficiency levels went into effect in late 1997. If the system uses an older motor that has been rewound several times, or has a smaller motor, 80% efficiency (or the motor nameplate efficiency rating) should be used. For a more accurate assessment, add the horsepower ratings for the parasitic loads from any auxiliary motors to the compressor motor rating.

It should be noted that the common practice in the industry is to apply motors having a 15% continuous service factor and to use about two-thirds of this

service factor. This means that a motor having a nominal nameplate rating of 100 hp may, in fact, be loaded to 110 bhp at compressor full capacity and pressure. This may not be expressed in the manufacturer=s sales literature, however, so engineering data sheets for the specific air compressor should be consulted. If the motor is running into the service factor, the higher horsepower estimate should be used instead of the nameplate horsepower rating.

A Calculation with Measurements. A more accurate way to determine electricity consumption and costs involves taking electrical measurements of both full-load amps and volts. Motor full-load bhp and efficiency are not required for this calculation, although full-load power factor, which can be obtained from motor manufacturers, is. The calculation takes full-load amps, converts to full-load kW, and then multiplies by hours of operation and electricity costs. A calculation is shown in the next text box.

Pressure and Electricity Cost

High pressure air is more expensive to produce and deliver than low pressure air. For a system operating at around 100 psig, a rule of thumb is that every 2 psi in operating pressure requires an additional 1% in operating energy costs. In the system described in the first example shown, running the system at 110 psig instead of 100 psig would increase the energy costs by 5%, or \$1,800 per year.

Savings From Performance Improvements

Due to the relatively low initial cost of the compressor when compared to lifetime electricity expenses, users should utilize life-cycle cost analysis when making decisions about compressed air systems. In addition, a highly efficient compressed air system is not merely a system with an energy-efficient motor or efficient compressor design. Overall system efficiency is the key to maximum cost savings. Too often users are only concerned with initial cost and accept the lowest bid on a compressed air system, ignoring system efficiency.

Thorough analysis and design will be required to obtain an efficient system. Many compressed air system users neglect these areas, thinking they are saving money, but end up spending much more in energy and maintenance costs.

A system that has undergone numerous modifications and has only been maintained enough to keep it running can frequently achieve energy savings of 20-50% or more. For the 100-hp system described previously, this represents annual savings of \$7,000-\$18,000. Larger systems will have correspondingly greater energy savings.

Too many decisions regarding compressed air systems are made on a first-cost basis, or with an "if it ain't broke, don't fix it" attitude. To achieve optimum compressed air system economics, compressed air system users should select equipment based on life-cycle economics, properly size components, turn off unneeded compressors, use appropriate control and storage strategies, and operate and maintain the equipment for peak performance.

Controlling System Pressure

Many plant air compressors operate with a full load discharge pressure of 100 psig and an unload discharge pressure of 110 psig or higher. Many types of machinery and tools can operate efficiently with an air supply at the point of use of 80 psig or lower. If the air compressor discharge pressure can be reduced, significant savings can be achieved. Check with the compressor manufacturer for performance specifications at different discharge pressures.

Demand controls require sufficient pressure drop from the primary air receiver into which the compressor discharges, but the plant header pressure can be controlled to a much narrower pressure range, shielding the compressor from severe load swings. Reducing and controlling the system pressure downstream of the primary receiver can result in a reduction in energy consumption of up to 10% or more, even though the compressors discharge pressure has not been changed.

Reducing system pressure also can have a cascading effect in improving overall system performance, reducing leakage rates, and helping with capacity and other problems. Reduced pressure also reduces stress on components and operating equipment. However, a reduced system operating pressure may require modifications to other components, including pressure regulators, filters, and the size and location of compressed air storage.

Lowering average system pressure requires caution since large changes in demand can cause the pressure at points of use to fall below minimum requirements, which can cause equipment to function improperly. These problems can be avoided with careful matching of system components, controls, and compressed air storage capacity and location.

For applications using significant amounts of compressed air, it is recommended that equipment be specified to operate at lower pressure levels. The added cost of components, such as larger air cylinders, usually will be recouped quickly from resulting energy savings. Production engineers often specify end-use equipment to operate at an average system pressure. This results in higher system operating costs. Firstly, the point of use installation components such as hoses, pressure regulators, and filters will be installed between the system pressure and the end-use equipment pressure. Secondly, filters will get dirty and leaks will occur. Both result in lower end-use pressure. This should be anticipated in specifying the available end-use pressure.

If an individual application requires a higher pressure, instead of raising the operating pressure of the whole system it may be best to replace or modify this application. It may be possible to have a cylinder bore increased, gear ratios may be changed, mechanical advantage improved, or a larger air motor may be used. The cost of the improvements probably will be insignificant compared with the energy reduction achieved from operating the system at the lower pressure.

It is also important to check if manufacturers are including pressure drops in filters, pressure regulators, and hoses in their pressure requirements for end-use equipment, or if the pressure requirements as stated are for after those components. A typical pressure differential for a filter, pressure regulator, and hose is 7 psid, but it could be much higher in poorly designed and maintained systems.

When demand pressure has been successfully reduced and controlled, attention then should be turned to the compressor control set points to obtain more efficient operation, and also to possible unloading or shutting off a compressor to further reduce energy consumption.

Connecting Technology

OETIKER Connecting Technology Swing Couplings SC

Contents

3	Swing Couplings SC
4	SC Swing to Connect
5	SC Full Flow
6	SC Compatibility
8	SC Series A1 1/4"
9	SC Series B1 1/4"
10	SC Series D 3/8
11	SC Series E 3/8
12	SC Series H 1/2
13	SC Accessories
14	Air Consumption of Pneumatic Hand Tools
15	SC Materials, Seals, Lubricants

The OETIKER Group Worldwide

The primary objective of the OETIKER Group is to supply customers with safe and reliable products.

For over 50 years, OETIKER has revolutionized clamping of hoses, pipes and other objects with a great variety of clamps and rings for a wide range of materials. - All of it complemented by a full choice of quick action and swing couplings. The OETIKER Group was founded in Switzerland in 1943 and is now multinational with a worldwide network of companies which together offer their customers comprehensive planning, construction, design and service support. **OETIKER** companies are strategically placed throughout the world to produce and supply connecting products. Manufacturing is standardized across all OETIKER production companies. OETIKER products are sold both by companies within the OETIKER Group and via a selected distributor network. The OETIKER name is a protected trademark which stands for quality, innovation and continuous improvement, both literally and in the spirit intended by the founder of the company, Hans Oetiker. Numerous connecting technology patents are directly related to the OETIKER name.

OETIKER Quality Standards

All companies within the OETIKER Group are certified under – ISO/TS 16949 for production, research, development and sales. OETIKER companies already comply with the newly formulated environmental guidelines detailed in ISO 14001 which involve the careful use of resources, the use of recyclable materials and minimal use of chemical additives.

In order to ensure optimum quality throughout the world, all OETIKER companies use the latest in production and inspection equipment.

Research and Development...

... Efficient Manufacturing Plants...

...Testing

Swing Couplings SC

The OETIKER SC Series: User friendly, economical, safe

Safely swing to connect. With full flow. No force required or loss of pressure in the system.

Just a turn and the air vent ensures that the hose is ventilated – thus rendering it harmless.

OETIKER swing couplings SC are available in nominal sizes 1/4" to 1/2" and in different models. They are compatible with most popular plug systems. The many different types and models and a wide choice of seals and lubricants mean that OETIKER couplings are suitable for numerous applications throughout industry.

Durability, reliability, simple and safe handling are features of all OETIKER swing couplings. OETIKER swing couplings fulfill all the requirements of current quality standards and have also been awarded a type examination certificate from the Swiss Accident Insurance Institute SUVA.

Series A1 Series B1

> Series D Series E

> > CHIKER

Series H

3

SC Swing to Connect

Simple and quick connection with no force or loss of pressure in the system: Operation of OETIKER swing coupling SC

Features

- In accordance with safety standard ISO 4414, EN 983
- Pressure always automatically off during the coupling process
- · Full flow, negligible loss of pressure
- Simple operation, no force required
- Compact design
- NBR standard seal
- Silicone free standard lubrication
- Eco-design
- Det Norske Veritas
 Type approval no. P-10819
- CE

Connection

Push suitable plug into coupling and swing approximately 90° until the orange ring engages in the groove.

Full flow with no restrictions.

Disconnection Pull back orange ring and swing plug to stop. Remove plug from coupling.

In order to prevent the hose from ejecting dangerously, the plug must be held in the hand until the hose is completely ventilated.

Safely swing to connect

SC Full Flow

The new generation of OETIKER couplings, the valveless SC coupling model - result of innovative development and many years of experience – full flow guaranteed in every case.

When using compressed air operated equipment, for instance, in conjunction with OETIKER swing couplings SC, the result will always be a method of operation which is more efficient with low energy consumption, thus making it very economical.

Application

Throughput media

Compressed air, gases, liquids and media with low to medium viscosity due to free flow with no restrictions. Easy to clean.

Pressure

Operating pressure up to 700 psi – connection and disconnection up to 200 psi – also suitable for technical vacuums (up to approximately 3 inHg).

Temperature

Standard model from -4° to $+212^{\circ}F$ (-20° to $+100^{\circ}C$). Higher temperatures possible depending upon media with the use of special FPM or EPDM seals (see page 15).

SC Performance Graph for Air

Flow rate at 68°F (20ºC), operating pressure 100 psi (6 bar)

6

More efficient, low energy consumption and safe: Use of the valveless OETIKER swing coupling SC

Full flow with negligible loss of pressure

Cross Section Model SC

SC Compatibility

Full compatibility with most popular plug systems: Guide for determining the most suitable OETIKER swing coupling SC

Plug form 1:1

Nominal Bore	SC Series	Standards	Compatible with*	Information Page
6 mm	Series A1	Plug in accordance with:	Aeroquip	FD41 8
1/4″		ISO 4414	Amflo	C37, C38
			Aro	210
			Cejn	300
			Dixon	DCP 37, DCP 38
			DynaQuip	DM-2
			Fairview	QD-F35
			Foster	210
			Legris	14, 22
			Parker	50
			Prevost	A 06
			Tomco	100
			SNAP-Tite	37

	-	H	-	-	_
	-			-	-
	-		-	-	-

Nominal Bore	SC Series	Standards	Compatible with*	Infor	mation Page
6 mm	Series B1	Plug in accordance with:	Aeroquip	FD40, FD43 1/4"	9
1/4″		ISO 4414	Amflo	C20, C21	
		US: MIL-C-4109	Aro	MS, H-F 1/4"	
		ISO 6150-B-12	Cejn	310	
		AFNOR: B-12 NF E 49-053	Dixon	DC 20, DC 21	
			DynaQuip	D, DM, DC 1/4"	
			Fairview	QD-F37	
			Foster	3000	
			Hansen	30-SVS, 1000, 3000	
			Legris	23, 24	
			Milton	H Series	
			Parker	E-z, 20, 30, HF 1/4"	
			Prevost	I 06	
			Tomco	180	
			SNAP-Tite	37	
Nominal Bore	SC Series	Standards	Compatible with*	Inform	mation Page
8 mm	Series D	Plug in accordance with:	Cejn	315	10
0.07		100 4444	All tax -	00 00 40	

Rectus

13

SC Compatibility

Full compatibility with most popular plug systems: Guide for determining the most suitable OETIKER swing coupling SC

Plug form 1:1	Nominal Bore	SC Series	Standards	Compatible with*	I	nformation Page
	8 mm	Series E	Plug in accordance with:	Aeroquip	FD40, FD43 3	3/8″ 11
a management and the second se	3/8″		ISO 4414	Amflo	C26. (025
			US: MIL-C-4109	Aro	MS, H-F 3	3/8″
S MARRIER WITH & STATE & STATE OF BRIDE AND D			ISO 6150-B -15	Cein		430
			AFNOR: B-15 NF F 49-053	Dixon	DCP 26 DCP	25
				DynaQuip	D. DM. DC. DP 3	3/8″
				Fairview	QD-	F37
				Foster	4	000
				Hansen	40-SVS, 400, 40	000
				Learis		30
				Parker	EZ. 20. 30. HF. PB 3	3/8″
				Prevost		08
				Tomco	T4000, T4	400
				SNAP-Tite		37
	Nominal Bore	SC Series	Standards	Compatible with*		nformation Page
	11 mm	Series H	Plug in accordance with:	Aeroquip	ED40 ED43 1	/2″ 12
and	1/2″	001100 11	ISO 4414	Amflo	C10, C9, CP18, CI	P17
			US: MIL-C-4109	Aro	H-F, F-B 1	/2″
FARMER CONTRACTOR AND AND RECEIPTED			ISO 6150-B-17	Cejn		550
A DESCRIPTION OF A DESC			AFNOR: B-17 NF E 49-053	Dixon	DC 10, D	C 9
And and a state of the state of				DynaQuip	D, DM, DC, DP 1	/2″
				Fairview	QD-	F37
				Foster	50	000
				Hansen	50-SVS, 500, 5	000
				Parker	EZ, 20, 30, PB 1	/2″
				Prevost	IRM	11
				Tomco	T5000, T	500

* The list is not conclusive. Names and references are, in some instances, registered trademarks of other manufacturers.

Swing Coupling SC Series A1

Actual size

Features

- In accordance with safety standard ISO 4414, EN 983
- Full flow, negligible loss of pressure
- Simple operation, no force required
- Compact design
- Det Norske Veritas
- Type approval no. P-10819
- (€

Temperature Range

-4° to +212°F (-20º to +100ºC)

Operating Pressure

3 inHg to 700 psi, connection/ disconnection to maximum 200 psi

Materials, Seals, Lubricants

Guide to selection and ordering (see page 15).

Material Code

- A = Steel, nickel plated / aluminium
- B= Steel, black abrasion resistant finish
- C = Stainless steel
- E = Nitrile elastomer (NBR)
- I = Surface hardened steel, nickel plated
- S = Surface hardened steel, zinc plated
- Z = Zinc diecast, nickel plated,

orange plastic coating Silicone-free standard lubrication

Compatible with

See page 6.

Swing coupling

- with female thread

→→ with hose barb

← with female thread

 \leftarrow with hose barb

Α	Part No.	
NPT1/4″	205 00 291	
NPT3/8″	205 00 292	
NPT1/2"	205 00 293	

NPT1/4″	205 00 297	
NPT3/8″	205 00 298	
NPT1/2"	205 00 299	

D	Part No.
HB 1/4″	205 00 395
HB 5/16″	205 00 396
HB 3/8″	205 00 397
HB 1/2″	205 00 398

Α	Part No.	
NPT1/4″	255 00 003	
NPT3/8″	255 00 066	

NPT1/4″	255 00 007
NPT 3/8"	255 00 068

D	Part No.	
HB 1/4″	255 00 240	
HB 5/16″	255 00 241	
HB 3/8″	255 00 242	

Actual size

Swing coupling

- with female thread

–∕>→ with	male	thread
-----------	------	--------

Plug				
\leftarrow	with	male	thread	

Α	Part No.
NPT1/4″	205 00 311
NPT3/8″	205 00 312
NPT1/2"	205 00 313

NPT1/4″	205 00 317	
NPT3/8″	205 00 318	
NPT1/2"	205 00 319	

D	Part No.
HB 1/4″	205 00 399
HB 5/16″	205 00 400
HB 3/8″	205 00 401
HB 1/2″	205 00 402

A	Part No.
NPT1/4″	255 00 014
NPT3/8″	255 00 069

NPT1/4″	255 00 018
NPT3/8″	255 00 274

D	Part No.
HB 1/4″	255 00 243
HB 5/16"	255 00 244
HB 3/8″	255 00 245
HB 3/8	255 00 245

Swing Coupling SC Series B1

Features

- In accordance with safety standard ISO 4414, EN 983
- Model in accordance with ISO 6150-B-12, AFNOR: B-12 NF E 49-053 and US: MIL-C-4109
- Full flow, negligible loss of pressure
- Simple operation, no force required
- Compact design
- Det Norske Veritas
- Type approval no. P-10819 • C€

Temperature Range

-4° to +212°F (-20º to +100ºC)

Operating Pressure

3 inHg to 700 psi, connection/ disconnection to maximum 200 psi

Materials, Seals, Lubricants

Guide to selection and ordering (see page 15).

Material Code

- A = Steel, nickel plated / aluminium
- B = Steel, black abrasion resistant finish
- C = Stainless steel
- E = Nitrile elastomer (NBR)
- I = Surface hardened steel, nickel plated
- S = Surface hardened steel, zinc plated
- Z = Zinc diecast, nickel plated,
- orange plastic coating Silicone-free standard lubrication

Compatible with

See page 6.

Swing Coupling SC Series D

Actual size

Features

- · In accordance with safety standard ISO 4414. EN 983
- Full flow, negligible loss of pressure
- Simple operation, no force required
- Compact design
- Det Norske Veritas Type approval no. P-10819
- CE

Temperature Range

-4° to +212°F (-20º to +100ºC)

Operating Pressure

3 inHg to 700 psi, connection/ disconnection to maximum 200 psi

Materials, Seals, Lubricants

Guide to selection and ordering (see page 15).

Material Code

- A = Steel, nickel plated / aluminium
- B = Steel, black abrasion resistant finish
- C = Stainless steel
- E = Nitrile elastomer (NBR)
- I = Surface hardened steel, nickel plated
- S = Surface hardened steel, zinc plated
- Z = Zinc diecast, nickel plated,

orange plastic coating Silicone-free standard lubrication

Compatible with

See page 6.

Swing coupling

- with female thread

	A		
--	---	--	--

NPT1/4″	205 00 426	
NPT3/8"	205 00 037	
NPT1/2"	205 00 038	

D	Part No.
HB 5/16″	205 00 410
HB 3/8″	205 00 411
HB 1/2″	205 00 412

Α	Part No.	
NPT1/4"	255 00 058	
NPT3/8″	255 00 059	
NPT1/2"	255 00 060	

NPT1/4″	255 00 061	
NPT 3/8″	255 00 062	
NPT1/2"	255 00 063	

D	Part No.
HB 5/16″	255 00 249
HB 3/8″	255 00 250
HB 1/2″	255 00 251

- with hose barb

- with female thread

with hose barb

Actual size

Swing coupling

- vith female thread

⊘ w	ith	male	thread
-----	-----	------	--------

Plug				
\leftarrow	with	male	thread	
				_

 \leftarrow with female thread

Α	Part No.
NPT1/4″	205 00 052
NPT3/8″	205 00 026
NPT1/2"	205 00 027

NPT1/4″	205 00 214	
NPT3/8″	205 00 030	
NPT1/2"	205 00 031	
	203 00 031	

D	Part No.	
HB 5/16″	205 00 416	
HB 3/8″	205 00 417	
HB 1/2″	205 00 418	

A	Part No.
NPT1/4″	255 00 236
NPT3/8″	255 00 044
NPT1/2"	255 00 045

NPT1/4″	255 00 237
NPT3/8″	255 00 049
NPT1/2"	255 00 050

Part No.	
255 00 252	
255 00 253	
255 00 254	
255 00 255	
	Part No. 255 00 252 255 00 253 255 00 254 255 00 255

Swing Coupling SC Series E

Features

- In accordance with safety standard ISO 4414, EN 983
- Model in accordance with ISO 6150-B-15, AFNOR: B-15 NF E 49-053 and US: MIL-C-4109
- Full flow, negligible loss of pressure
- Simple operation, no force required
- Compact design
- Det Norske Veritas
 Type approval no. P-10819
- (6

Temperature Range

-4° to +212°F (-20º to +100ºC)

Operating Pressure

3 inHg to 700 psi, connection/ disconnection to maximum 200 psi

Materials, Seals, Lubricants

Guide to selection and ordering (see page 15).

Material Code

A = Steel, nickel plated / aluminium

- B = Steel, black abrasion resistant finish
- C = Stainless steel
- E = Nitrile elastomer (NBR)
- I = Surface hardened steel, nickel plated
- S = Surface hardened steel, zinc plated
- Z = Zinc diecast, nickel plated,
- orange plastic coating Silicone-free standard lubrication

Compatible with

See page 7.

Swing Coupling SC Series H

75% of actual size

Features

- In accordance with safety standard ISO 4414. EN 983
- · Model in accordance with ISO 6150-B-17. AFNOR: B-17 NF E 49-053 and US: MIL-C-4109
- Full flow, negligible loss of pressure
- Simple operation, no force required
- Compact design
- Det Norske Veritas •
- Type approval no. P-10819 • CE

Temperature Range

-4° to +212°F (-20º to +100°C)

Operating Pressure

3 inHg to 700 psi, connection/ disconnection to maximum 200 psi

Materials, Seals, Lubricants

Guide to selection and ordering (see page 15).

Material Code

- A = Steel, nickel plated / aluminium
- B = Steel, black abrasion resistant finish
- C = Stainless steel
- E = Nitrile elastomer (NBR)
- I = Surface hardened steel, nickel plated
- S = Surface hardened steel, zinc plated

T = Steel, nickel plated, orange coated Silicone-free standard lubrication

Compatible with

See page 7.

Swing coupling

- with female thread

Α	Part No.	
NPT3/8″	205 00 109	
NPT1/2"	205 00 110	
NPT3/4″	205 00 111	

NPT3/8″	205 00 112	
NPT1/2"	205 00 113	
NPT3/4″	205 00 114	

-今→ with hose barb	
	¥ ⊃

D	Part No.
HB 1/2″	205 00 653

	1					
•				l		¥
3		0	[]			
3			\vdash		Ш	
<u> </u>		₩	╟──╯			Т

E C

Plug

 \leftarrow

- with male thread

with female thread

- with hose barb

A	Part No.	
NPT3/8″	255 00 277	
NPT1/2"	255 00 278	

NPT3/8″	255 00 279	
NPT1/2"	255 00 280	

D	Part No.	
HB 3/8″	255 00 265	
HB 1/2″	255 00 266	
HB 5/8″	255 00 267	

SC Accessories

Covers, Protectors for OETIKER Swing Couplings SC

Protective Cover for **OETIKER Swing Couplings SC**

Slides over airline coupling installation. Provides complete protective coverage of coupling and adaptor.

The plastic cover is attached over the housing of the OETIKER swing coupling SC to protect the work piece, e.g. for work on car body parts, furniture, etc.

Break-resistant polyamide, orange.

Suitable for hose

1/4" Series A1, B1

3/8" Series D, E

Part No.

295 00 480

295 00 481

Air Consumption of Pneumatic Hand Tools

Excellent Seal

Even small leaks can lead to big losses and they can also cause serious accidents.

It has been shown that in the case of compressed air, leaking couplings account for an energy loss of 8 - 15%.

Applications for OETIKER Couplings Series A1, B1 1/4" D, E 3/8"

Flow rate at 68°F (20°C) a	and 87 psi											
SCFM		0	20	40	60	80	100	200300 400	600 800 1000	1400	2000	3000
Blow gun		N										
Spray gun		1										
Crimping tool		-										
Swing grinder												
Metal cutting tool		*										
Drilling machine up to $\ensuremath{\mathcal{Q}}$	9 3/8" (10 mm)	-										
Rivet hammer \varnothing 5/8" (1	6 mm)	-										
Pneumatic screwdriver		~										
Impact screwdriver up to	5/8″ (M16)											
Grinding machine up to (∂ 6″ (100 mm)											
Chisel hammer		-										
Recommended & hose inner diameter & &	ð 1/4″ (6 mm) ð 5/16″ (8 mm) ð 3/8″ (10 mm)											

Applications for OETIKER Couplings Series H 1/2"

Drilling machine up to Ø 1 1/4" (32 mm)			
	·		
Grinding machine up to \emptyset 7" (180 mm)	-		
Grinding machine up to \emptyset 9" (230 mm)			
Impact screwdriver up to 1 3/4" (M 45)			
	•		
Recommended hose inner diameter \emptyset 1/2" (13	mm)		
Ø 5/8″ (16	mm)		
Ø 3/4″ (19	mm)		
Ø 1″ (25	mm)		
Ø 1 1/4″ (32	mm)		

SC Materials, Seals, Lubricants

Materials

OETIKER swing couplings are manufactured from high quality materials. Additional special surface treatments guarantee greater durability with less wear and tear and high resistance to corrosion.

The orange coating denotes safety - the plastic sleeve gives increased grip and helps to protect the work piece from possible damage. The cross section and material codes give details of the composition of each individual part.

In the case of air, gas and oil - as long as they are not mixed with any additives -OETIKER couplings made from standard materials will be suitable.

These details are not binding. Where there is any doubt, trials must be carried out.

Selection and Handling

Incorrect handling or the wrong choice of swing couplings or accessories can result in damage to property and/or personal injury. The maximum operating pressure for each model as specified by the manufacturer must not be exceeded. The throughput medium is a critical factor in the choice of seal and coupling material. External mechanical impact and/or vibration will have an adverse effect on the durability of couplings and accessories and should therefore be avoided or, where this is not possible, limited. OETIKER recommends that couplings and accessories should be checked periodically for excessive wear and leaks. **OETIKER** Customer Service Department will be happy to give you further details about the use of OETIKER couplings. For more detailed information, please follow the Operating Instructions.

All details are not binding. Before use,

Seals

please contact OETIKER for information about the concentration, mixture or temperature of media. If there is any doubt, trials should be carried out. All legislation relating to foodstuffs must be observed.

The following quality seals are available for

OETIKER couplings. Various seals can be

used depending upon the throughput media.

Standard Type

Tvpe N

Nitrile elastomer (NBR) Resistant to ageing, high mechanical strength, resistant to oil and fuel. Temperature from -4°F to +212°F (-20ºC to +100ºC).

Optional Seals

Type V

Fluorine elastomer (FPM) Very good resistance at high temperatures (except for hot water and steam). Good resistance to many chemicals, ozone, weather. Temperature from -4°F to +554°F (-15°C to +200°C).

Type P

Ethylene propylene elastomer (EPDM) Very good resistance against hot water and steam, resistant to ageing and weather, not resistant to mineral oils and grease. Temperature from -40°F to +302°F (-40°C to +150°C).

Guide to Selection and Ordering Lubricants

All OETIKER couplings are greased with the standard high quality silicone-free lubricant.

Note about Safety

ISO 6150 §7.1 recommends that a hose of at least 300 mm in length is used between the coupling and a vibrating tool. Please also read the operating instructions which are supplied with the coupling.

Note about Ordering

If, instead of the standard version, an optional seal is required, please specify this when ordering.

Notes

Swing Coupling by Oetiker Go w

o b [

Go with the Flow!

OETIKER Swing Couplings offer unrestricted full flow with safe, quick connection or disconnection under pressure. The ergonomic design provides superior sealing, ease of operation and long service life.

For compressed air supply lines to pneumatic tools and automation equipment as well as those carrying low viscosity fluids and gases.

OETIKER Swing Couplings perform best when used with precision-made OETIKER plugs though, couplings are interchangeable with most plug systems.

sizes: 1/8" (3 mm) to 3/4" (19 mm)

Use OETIKER Clamps to secure OETIKER Couplings to hose.

OETIKER 2-Ear Clamp

10

Connecting Technology

Safely connected and disconnected under pressure

Cross Section Model SC

Quality Features

OETIKER Swing Couplings are manufactured from select grades of ferrous and non-ferrous materials. Special surface treatment on housings and cylinders guarantee durability with little wear and high corrosion resistance.

Maximum pressure rating of 25 bar/360 psi up to approx. 100 mbar vacuum. Do not exceed pressure limitations of the hose and/or operated device.

Standard models from -20° to +100°C (-4° to 212°F). Higher temperatures possible according to media with the use of special FPM, EPDM or FFKM seals.

OETIKER Swing Couplings are fitted with nitrile elastomer seals NBR (standard). Other seals are optional. Extra precaution must be taken with gaseous applications.

Every coupling is leakage tested – suitable for vacuum.

High quality lubricant is standard. Special lubricants on request.

Safety Features

Simultaneous venting, the need to hold the hose end with the plug to be removed from the coupling during disconnecting reduces whiplash effect.

The orange colouring on the release sleeve signifies **safety**. The plastic coating affords increased grip and can also prevent damage to workpieces.

In accordance with ISO 6150, safety standard: ISO 4414, MILC 4109

Notes

If barbed stems are used, barb stem size has to match inside diameter of the hose. Fittings/plugs must be secured to the hose with a hose clamp, preferably an OETIKER Clamp.

For chemical resistance to aggressive media, the coupling and seal components must be tested prior to use.

unrestricted flow – minimal loss of pressure

Disconnect retract release sleeve, swing plug into angled position and remove.

swing plug with hose attached to straight position

full flow

Quick Action Couplings SV 2-Stage Non-Interchangeable

Danger of wrong line connections is eliminated as only adaptor with identical key fits

1.1

0

Connecting Technology

Ask for further detailed information on the OETIKER Quick Action Couplings product range.

a de

Features

- In accordance with safety standard . ISO 4414, EN 983
- Safety feature: 2-stage disconnection
- Danger of wrong line connections is eliminated as only adaptor with
- identical key fits. Simple operation
- SGWA certificate

Quick Action Coupling

with female thread G 1/4, 3/8, 1/2

with hose stem LW 6, 8, 10 -0>

Internet: www.oetiker.com

Application

Chemical and pharmaceutic industry, construction of technological installations. laboratory and medical technology, refinery, industry in general with risk of wrong line connections.

Media

Gases and liquids with low viscosity.

Operating Pressure

Up to 50 bar, (dis-) connection up to 15 bar. Also suitable for technical vacuum up to ca. 100 mbar.

Temperature Range

Standard version from -15°C up to +200°C. Dependent on the media higher temperatures are possible using special seals.

Keys (colour coding)

Adaptor

with male thread G 1/8, 1/4

with hose stem LW 6, 8, 10

Danger of wrong line connections is eliminated

OETIKER

Materials

Coupling and Adaptor with check valve: W-No. 1.0737. chemically nickel-plated or stainless steel W-No. 1.4435. Adaptor: Stainless steel W-No. 1.4435.

Seals

Seal: FPM Special Seals: NBR, MVQ, EPDM, FFKM

Lubricant

Coupling: High pressure lubricant for use with gaseous or liquid oxygen. Adaptor and Adaptor with check valve: Oil- and grease-free.

Special Executions

Other lubricants, colour coding, and connections available on request.

Adaptor with check valve

etiker.com OETIKER has been developing connecting technology for over 50 years. OETIKER products are manufactured by its own companies in line with ISO/TS 16949 and sold worldwide by subsidiary companies

or agents in over 40 countries. Numerous patents are proof of continuous innovation

Maschinen- und Apparatefabrik Oberdorfstrasse 21 CH-8812 Horgen (Zurich) Phone +41 1 728 55 55 +41 1 728 55 15 Fax e-mail info@ch.oetiker.com

Refere
Cross
UPLER
SK CO
- QUIC
ISTRIAL
S

			STFFL			STEEL				STEEL		1110	S I EEL C TEEL	0 EEL		CTFFI				STEEL		STEEL	STEEL	STEEL												
	OETIKER	N/A	205 00 312	205 00 052	205 00 026	205 00 026	205 00 027	205 00 109	205 00 110	205 00 110	205 00 111	N/A	205 00 310		202 00 214	202 00 030	205 00 031	205 00 112	205 00 113	205 00 113	205 00 114	205 00 399	205 00 400	205 00 401	N/A	205 00 417	205 00 418	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	PARKER	B23A	B23 B23F	25C	25	B25	25F	17E	17	B17	17G	B22A	B22	DZZE	047	24 R9A	24F	16E	16	B16	16G	B20-3B	B20-4B	B20-5B	N/A	24-5B	24-6B	16-5B	16-6B	16-7B	B20-3BP	B20-5BP	N/A	24-5BP	16-5BP	16-6BP
	FOSTER	2803	3202	4004	4204	N/A	4404	5005	5205	N/A	5405	2903	3103	0000	1004	4004 N/A	4504	5105	5305	N/A	5505	3603	3653	3703	4604	4804	4904	5705	5805	5905	1513	1713	N/A	1714	1715	1815
	MILTON	707	718 718	1833	1835	N/A	N/A	1813	1815	N/A	N/A	708	710		A/M		N/A	1814	1816	N/A	N/A	717	N/A	717-6	N/A	1836-6	N/A	N/A	N/A	N/A	1717-4	1717-6	N/A	1796-6	N/A	N/A
ence	TOMCO	M183	M185	T400	T420	N/A	T440	T500	T520	N/A	T540	M180	181M		T420	N/A	T450	T510	T530	N/A	T550	M186	M188	M187	T460	T480	T490	T570	T580	T590	M189	M190	N/A	N/A	N/A	N/A
ss Refere	ARO	23102-1	23102-200 23102-3	23103-3	23103-300	N/A	23103-4	23104-3	23104-400	N/A	23104-5	23102-11	23102-212	012-20162	21-00-02		23103-14	23104-13	23104-14	N/A	23104-15	23102-22	23102-23	23102-24	23103-22	23103-324	23103-25	23104-24	23104-25	23104-26	23102-27	23102-28	23103-27	23103-28	23104-28	23104-29
ER Cro	NOXID	DC2021	DC2023	DC2622	DC26	N/A	DC2624	DC1023	DC10	N/A	DC1026	DC2101					DC2504	DC903	DC9	N/A	DC906	DC2042	DC2043	DC2044	DC2642	DC2644	DC2645	DC1044	DC1045	DC1046	N/A	N/A	N/A	N/A	N/A	N/A
COUPL	AMFLO	C20-21	C20B	C26-22	C26	N/A	C26-24	C10-23	C10	C10B	C10-26	C21-01	0218			N/A	C25-04	C9-03	හි	C9B	C9-06	C20-42	C20-43	C20-44	C26-42	C26-44	C26-45	C10-44	C10-45	C10-46	C20-42L	C20-44L	C26-42L	C26-44L	N/A	N/A
- QUICK	HANSEN	800	1200	400	420	N/A	440	500	520	N/A	540	006	1200	110	120	NI/A	450	510	530	N/A	550	1600	1800	1700	4004	4006	4008	570	580	590	1600P	1700P	N/A	N/A	N/A	N/A
INDUSTRIAL	NORTHWEST HYDRO LINE	B200X4X2F	B2UUX4X4F B200X4X6F	B200X6X4F	B200X6X6F	B200X6X6F"B"	B200X6X8F	B200X8X6F	B200X8X8F	B200X8X8F"B"	B200X8X12F	B200X4X2M	B2UUX4X4M D200V1V6M			B200X6X6M"R"	B200X6X8M	B200X8X6M	B200X8X8M	B200X8X8M"B"	B200X8X12M	B200X4X4HB	B200X4X5HB	B200X4X6HB	B200X6X4HB	B200X6X6HB	B200X6X8HB	B200X8X6HB	B200X8X8HB	B200X8X12HB	B200X4X4P0	B200X4X6P0	B200X6X4P0	B200X6X6P0	B200X8X6P0	B200X8X8P0

Reference
Cross
PLUG
RIAL
ISUDN

			STEEL			STFFI				STEEL						CTEEL	OILLL				STEEL				STEEL			CTEEL	OILLL															
OETIKER	N/A	255 00 018	255 00 018	255 00 274	255 00 23/ 255 00 049	255 00 049	255 00 050	255 00 279	255 00 280	255 00 280	255 00 281	AVAILABLE	AVAILABLE	AVAILABLE	DEE OD 01 4	255 00 014	255 00 060		255 00 236	255 00 044	255 00 236	255 00 045	255 00 277	255 00 278	255 00 278	AVAILABLE	AVAILABLE		AVAILABLE AVAILABLE	255 00 243	N/A	255 00 244	255 00 245	N/A	200 00 203	233 00 234	255 00 266	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PARKER	H1C	H3C	BH3C	H3C-E	H3F	RH3F	H3E-F	H1F	H3F	BH3F	H3F-G	H3G-F	H3G	H3G-J	DOH			HOOF	HOF	H2F	BH2C	H2E-F	HOF	H2F	BH2F	H2F-G	H2G-F		H2G-,	HBC	N/A	H8C-D	H9C	N/A	нас Нас	HAF	H5F	H5F-G	H5G-F	H5G	BH5G	H5G-J		H9CP
FOSTER	13-3	11-3	11-3B	15-3	4-1-4	A/N	45-4	53-5	55-5	N/A	57-5	65-6 07 0	9-79 00	0-60	2-21	10-3B	14-3	38-4	40-4	42-4	42-4B	44-4	52-5	54-5	54-5B	56-5	64-6	0-00	68-6	16-3	16-3B	165-3	17-3	46-4	40-4 40-4	49-4	60-5	61-5 61-5	70-6	71-6	N/A	72-6	51-3	71-3
MILTON	729	728	N/A	732	1838	N/A	N/A	1860	1858	N/A	N/A	N/A	N/A	N/A	07./	N/A	222		1830	1837	N/A	N/A	1859	1857	N/A	N/A	N/A	N/N	N/A	736	N/A	N/A	736-6	A/A	103/-0		N/A	N/A	N/A	N/A	N/A	N/A	1/36-4	1736-6
TOMCO	1803	1805	1805B	1807 T 11	141 T43		T45	T53	T55	N/A	T57	N/A	N/A	A/N	1802	1804B	1806	T38	T40	T42	N/A	T44	T52	T54	N/A	T56	N/A		A/N	1824	N/A	1827	1826 ± 10	146	140 TAD	T50	T60	T61	N/A	N/A	N/A	N/A	1850	1860
ARO	23902-100	23902-200	N/A	23902-3	23903-200	N/A	23903-4	23904-3	23904-400	N/A	23904-5	N/A	N/A	A/N	23902-110	012-20802	23002-210		23903-210	23903-310 23903-310	N/A	23903-410	23904-310	23904-410	N/A	23904-510	N/A	N/A	N/A	23902-220	N/A	23902-320	23902-420	23903-220	23903-420	030-000-2000-2	23904-520	23904-620	N/A	N/A	N/A	N/A	23902-27	23902-28
NOXIO	DCP2021	DCP20	N/A	DCP2023	DCP26	N/A	DCP2624	DCP1823	DCP18	N/A	DCP1826	DCP/024	DCP/026						DCP2502	DCP25	N/A	DCP2504	DCP1703	DCP17	N/A	DCP1706	DCP7104		DCP7108	DCP2142	N/A	DCP2143	DCP2144	DCP2542	DCD0646	DCP1744	DCP1745	DCP1746	DCP7145	DCP7146	N/A	DCP7148	N/A N/V	N/A
AMFLO	CP20-21	CP20	CP20B	CP20-23	CP26	N/A	CP26-24	CP18-23	CP18	N/A	CP18-26	CP/0-24	CP/0-26	0P/U-28	CP21-U1		CD01-03		CP25-02	CP25	N/A	CP25-04	CP17-03	CP17	N/A	CP17-06	CP71-04		CP71-08	CP21-42	N/A	CP21-43	CP21-44	CP25-42	CD06_44	CF 23-43	CP17-45	CP17-46	CP71-45	CP71-46	N/A	CP71-48	CP21-42L	CP21-44L
HANSEN	13	÷	11B	15	4-	R43	45	53	55	N/A	57	N/A	N/A	A/N	2 9			1 00	40	42	B42	44	52	54	B54	56	N/A		N/A	16	N/A	18	17	404	400	004	60	61	N/A	N/A	N/A	N/A	16P	17P
NORTHWEST HYDRO LINE	P400X4X2F	P400X4X4F	P400X4X4F"B"	P400X4X6F	P400X6X6F	P400X6X6F"R"	P400X6X8F	P400X8X6F	P400X8X8F	P400X8X8F"B"	P400X8X12F	P400X12X8F	P400X12X12F	P4UUX12X16F	P400X4X2M		D NITXTXOUT I	P400X6X2M	P400X6X4M	P400X6X6M	P400X6X6M"B"	P400X6X8M	P400X8X6M	P400X8X8M	P400X8X8M"B"	P400X8X12M	P400X12X8M		P400X12X16M	P400X4X4HB	P400X4X4HB"B"	P400X4X5HB	P400X4X6HB	P400X6X4HB		PADOX0X01D	P400X8X8HB	P400X8X12HB	P400X12X8HB	P400X12X12HB	P400X12X12HB"B"	P400X12X16HB		P400X4X6P0

Reference
Cross
DUPLER
JICK CO
ATIC QL
TOM

			STEEL	STEEL		STEEL	STEEL	STEEL	STEEL	STEEL	STEEL	STEEL																							
	OETIKER	N/A	205 00 311	205 00 312	205 00 052	205 00 026	205 00 027	205 00 109	205 00 110	205 00 111	AVAILABLE	AVAILABLE	AVAILABLE	N/A	205 00 317	205 00 318	205 00 214	205 00 030	205 00 031	205 00 112	205 00 113	205 00 114	AVAILABLE	AVAILABLE	AVAILABLE	205 00 399	205 00 400	205 00 401	205 00 417	205 00 418	N/A	N/A	N/A	N/A	N/A
	PARKER	B33A	B33	B33E	B35C	B35	B35F	B37E	B37	B37G	B39F	B39	B39J	B32A	B32	B32E	B34C	B34	B34F	B36E	B36	B36G	B38F	B38	B38J	B30-3B	B30-4B	B30-5B	B34-5B	B34-6B	B36-6B	B36-7B	B38-6B	B38-7B	B38-8B
	FOSTER	FM2803	FM3003	FM3203	FM4004	FM4204	FM4404	FM5005	FM5205	FM5405	FM6206	FM6406	FM6606	FM2903	FM3103	FM3303	FM4104	FM4304	FM4504	FM5105	FM5305	FM5505	FM6306	FM6506	FM6706	FM3603	FM3653	FM3703	FM4804	FM4904	FM5805	FM5905	FM6806	FM6906	FM7006
	MILTON	707	715	718	1833	1835	N/A	1813	1815	N/A	N/A	N/A	N/A	708	716	719	N/A	1836	N/A	1814	1816	N/A	N/A	N/A	N/A	717	N/A	717-6	1836-6	N/A	N/A	N/A	N/A	N/A	N/A
ence	TOMCO	183	184	185	T4000	T4200	T4400	T5000	T5200	T5400	N/A	N/A	N/A	180	181	182	T4100	T4300	T4500	T5100	T5300	T5500	N/A	N/A	N/A	186	188	187	T4800	T4900	T5800	T5900	N/A	N/A	N/A
ss Refere	ARO	23002-201	23002-200	23002-203	N/A	N/A	N/A	23002-212	23002-213	N/A	N/A	N/A	23002-223	23002-224	N/A	N/A	N/A	N/A	N/A	N/A	N/A														
ER Cro	NOXID	N/A	DCB20	DCB2023	DCB2622	DCB2622	DCB2624	DCB1023	DCB10	DCB1026	DC7024	DC7026	DC7028	N/A	DCB21	DCB2103	DCB2502	DCB25	DCB2504	DCB903	DCB9	DCB906	DC7104	DC7106	DC7108	DCB2042	N/A	DCB2044	DCB2644	DCB2645	DCB1045	DCB1046	DC7045	DC7046	DC7048
COUPL	AMFLO	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
QUICK	HANSEN	2800	3000	3200	4000	4200	4400	5000	5200	5400	6200	6400	6600	2900	3100	3300	4100	4300	4500	5100	5300	5500	6300	6500	6700	3600	3800	3700	40600	40800	5800	5900	6800	0069	2000
AUTOMATIC	NORTHWEST HYDRO LINE	B300X4X2F	B300X4X4F	B300X4X6F	B300X6X4F	B300X6X6F	B300X6X8F	B300X8X6F	B300X8X8F	B300X8X12F	B300X12X8F	B300X12X12F	B300X12X16F	B300X4X2M	B300X4X4M	B300X4X6M	B300X6X4M	B300X6X6M	B300X6X8M	B300X8X6M	B300X8X8M	B300X8X12M	B300X12X8M	B300X12X12M	B300X12X16M	B300X4X4HB	B300X4X5HB	B300X4X6HB	B300X6X6HB	B300X6X8HB	B300X8X8HB	B300X8X12HB	B300X12X8HB	B300X12X12HB	B300X12X16HB

ARO STYLE COUPLER Cross Reference

OETIKER	205 00 291	205 00 292	205 00 297	205 00 298	205 00 395	205 00 397	N/A	N/A
PARKER	B53	B53E	B52	B52E	N/A	N/A	B50-3BP	B50-5BP
FOSTER	210-3003	210-3203	210-3103	210-3303	210-3603	210-3703	210-1513	210-1713
MILTON	775	N/A	N/A	N/A	776-4	776-6	1776-4	1776-6
TOMCO	M100	M106	M101	M107	M104	M105	N/A	N/A
ARO	210	210-203	210-212	210-213	N/A	N/A	210-227	N/A
NOXID	DC38	DC3823	DC37	DC3703	DC3842	DC3844	N/A	N/A
AMFLO	C38	C38-23	C37	C37-03	C38-42	C38-44	C38-42L	C38-44L
HANSEN	20AS-25F	20AS-37F	20AS-25M	20AS-37M	20AS-25H	20AS-37H	20AS-25HP	20AS-37HP
NORTHWEST HYDRO LINE	B500X4X4F	B500X4X6F	B500X4X4M	B500X4X6M	B500X4X4HB	B500X4X6HB	B500X4X4P0	B500X4X6P0

ARO STYLE PLUG

	ster Parker oetiker	0-11 A3C 255 00 007	J/A N/A 255 00 068	0-10 A2C 255 00 003	J/A N/A 255 00 066	0-16 A8C 255 00 240	
	MILTON FO	778 21	N/A	777 21	N/A	777-4 21	
	TOMCO	300	N/A	200	N/A	400	81 / N
	ARO	2609	22237	2608	22236	3946	
	NOXID	DCP38	DCP3823	DCP37	DCP3703	DCP3742	A 1 4 A
	AMFLO	CP38	CP38-23	CP37	CP37-03	CP37-42	1010
2	HANSEN	20AP-25F	20AP-37F	20AP-25M	20AP-37M	20AP-25H	
	NORTHWEST HYDRO LINE	P500X4X4F	P500X4X6F	P500X4X4M	P500X4X6M	P500X4X4HB	000000000000000000000000000000000000000

AUTOMOTIVE STANDARD COUPLER and PLUG Cross Reference

OETIKER	N/A
PARKER	AII
FOSTER	AII
MILTON	AII
TOMCO	AII
ARO	AII
NOXID	AII
AMFLO	AII
HANSEN	AII
NORTHWEST HYDRO LINE	AII

Oetiker does not produce an automotive design coupler.

OETIKER Swing Couplings SC

OETIKER Products

Clamps and Rings

Permanent, tight connection will only be released if required. For all clamping and pressure ranges, hard or soft materials, hoses, cables or ropes. Made from tube or band, stepless, self-tensioning or reusable. Simple and straightforward to use. Tools and accessories available.

Couplings

Safely swing to connect. Connects easily and quickly with no force required and no loss of pressure in the system. Full flow. Compatible with most current adaptor profiles.

Internet: www.oetiker.com

OETIKER has been developing connecting technology for over 50 years. OETIKER products are manufactured by its own companies in line with ISO/TS 16949 and sold worldwide by subsidiary companies or agents in over 40 countries. Numerous patents are proof of continuous innovation.

USA

SWITZERLAND

Hans Oetiker AG

Maschinen- und

Apparatefabrik

Fax

Oberdorfstrasse 21

CH-8812 Horgen (Zurich)

Phone +41 1 728 55 55

e-mail info@ch.oetiker.com

+41 1 728 55 15

Oetiker Inc. 3305 Wilson Street Marlette, Michigan MI 48453-0217 - USA Phone +1 (989) 635 3621 +1 (989) 635 2157

e-mail info@us.oetiker.com

Fax

CANADA **Oetiker Limited** 203 Dufferin Street South Canada

Alliston, Ontario L9R 1W7 Phone +1 (705) 435 4394 +1 (705) 435 3155 Fax

e-mail info@ca.oetiker.com

MÉXICO

Oceanía No.102 Fracc. Industrial Unidad Nacional II Santa Catarina, N.L. 66350 Phone +52 81 8390 0237 +52 81 8390 1371 Fax e-mail info@mx.oetiker.com

Oetiker de México S de RL de CV